Interactions between Point Bar Growth and Bank Erosion on a Low Sinuosity Meander Bend in an Ephemeral Channel: Insights from Repeat Topographic Surveys and Numerical Modeling
Abstract
Interactions between point bar growth, bank migration, and hydraulics on meandering rivers are complicated and not well understood. For ephemeral streams, rapid fluctuations in flow further complicate studying and understanding these interactions. This study seeks to answer the following `cause-and-effect' question: Does point bar morphologic adjustment determine where bank erosion occurs (for example, through topographic steering of the flow), or does local bank retreat determine where accretion/erosion occurs on the point bar, or do bank erosion and point bar morphologic adjustment co-evolve? Further, is there a response time between the `cause-and-effect' processes and what variables determine its magnitude and duration? In an effort to answer these questions for an ephemeral stream, a dataset of forty-eight repeat topographic surveys over a ten-year period (1996-2006) of a low sinuosity bend within the Goodwin Creek Experimental Watershed, located near Batesville, MS, were utilized in conjunction with continuous discharge measurements to correlate flow variability and erosional and depositional zones, spatially and temporally. Hydraulically, the bend is located immediately downstream of a confluence with a major tributary. Supercritical flumes on both the primary and tributary channels just upstream of the confluence provide continuous measured discharges to the bend over the survey period. In addition, water surface elevations were continuously measured at the upstream and downstream ends of the bend. No spatial correlation trends could be discerned between reach-scale bank retreat, point bar morphologic adjustment, and flow discharge. Because detailed flow patterns were not available, the two-dimensional computer model Telemac2D was used to provide these details. The model was calibrated and validated for a set of runoff events for which more detailed flow data were available. Telemac2D simulations were created for each topographic survey period. Flows greater than baseflow were combined to create contiguous hydrographs for each survey period. Statistical examination of local flow variability and morphological changes throughout the bend will be conducted and presented.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMEP41A1832U
- Keywords:
-
- 1815 Erosion;
- HYDROLOGY;
- 1825 Geomorphology: fluvial;
- HYDROLOGY;
- 1862 Sediment transport;
- HYDROLOGY;
- 5419 Hydrology and fluvial processes;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS