Investigating surface chemistry-controlled dolomite precipitation in saline, alkaline, and dilute waters
Abstract
Previous experiments have shown carboxylated organic matter facilitates dolomite precipitation at low temperature (< 80°C) in both modern and ancient seawater geochemistries. The efficacy of this mechanism in alternative chemical environments, particularly those typical of modern dolomitic environments, remains unclear. We investigated this question using a series of batch laboratory experiments ranging in duration from hours to several months. Experiments were conducted using fluids representative of environments where dolomite is found/thought to form in the modern, such as evaporative, alkaline lakes, sabkhas, and dilute mixing zones. Results indicate that while carboxylated organic matter promotes mineral precipitation in a variety of chemistries, the resultant mineralogy is primarily a function solution chemistry (i.e. saturation state). Specifically, our results suggest elevated alkalinity may be required to produce a high-Mg phase. In solutions where alkalinity is scarce, only amorphous carbonate phases form in association with organic matter, contrasting the Mg-bearing crystalline phases that result from highly alkaline solutions. Results of high-alkalinity, short-term experiments suggest that initially amorphous material is rapidly transformed into high and low-Mg phases in the presence of carboxylated organic matter, but that within days this mineralogy evolves. Longer timescales or elevated temperature may be necessary to produce an ordered dolomite phase. Additional results from longer term, steady-state experiments and additional analyses (Raman spectroscopy and tender energy spectroscopy) will shed further light on resultant mineralogy and this mechanism of dolomite precipitation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMEP13A1589Y
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 1051 Sedimentary geochemistry;
- GEOCHEMISTRY;
- 1862 Sediment transport;
- HYDROLOGY;
- 4273 Physical and biogeochemical interactions;
- OCEANOGRAPHY: GENERAL