Hydrodynamic Modeling to Assess the Impact of Man-Made Fishing Canals on Floodplain Dynamics: A Case Study in the Logone Floodplain
Abstract
The Logone floodplain in northern Cameroon, also known as Yaayre, is an excellent example of coupled human-natural systems because of strong couplings between social, ecological and hydrologic systems. Overbank flow from the Logone River inundates the floodplain ( 8000 km2) annually and the flood is essential for fish populations and the fishers that depend on them for their livelihood. However, a recent trend of construction of fishing canals threatens to change flood dynamics like duration and timing of onset and may reduce fish productivity. Fishers dig canals during dry season, which are used to catch fish by collecting and channeling water during the flood recession. By connecting the floodplain to the river, these fishing canals act an extension of the river drainage network. The goal of this study is to characterize the relationship between the observed exponential increase in numbers of fishing canals and flood dynamics. We modelled the Logone floodplain as a two-dimensional hydrodynamic model with sub-grid parameterizations of channels using LISFLOOD-FP. We use a simplified version of the hydraulic system at a grid-cell size of 1-km, upscaled using a new high accuracy map of global terrain elevations from Shuttle Radar Topography Mission (SRTM). Using data from a field-collected survey performed in 2014, 1120 fishing canal were collated and parameterized as 111 sub-grid channels and the fishnet structure was represented as a combination of weir and mesh screens. 49 mapped floodplain depressions were also represented as sub-grid channels. In situ discharge observations available at Katoa between 2001 and 2007 were used as input for the model. Preliminary results show that presence of canals resulted in a 24% quicker recession of water in the natural depressions showing increasing canal numbers lead to quicker flood recession. We also investigate the rate of effect increasing number of fishing canals has on flood recession by simulating varying numbers of canals. This model will be integrated within a larger modelling effort to quantify the floodplain's hydraulic, biological and human couplings. This larger integrated model will link inputs and outputs across three different models (flood, fish and fisher) for a holistic insight into the drivers and dynamics of this coupled human and natural system.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMEP11A1553S
- Keywords:
-
- 1641 Sea level change;
- GLOBAL CHANGE;
- 1847 Modeling;
- HYDROLOGY;
- 4313 Extreme events;
- NATURAL HAZARDS;
- 4321 Climate impact;
- NATURAL HAZARDS