Short-term, informal, and low-stakes scientific laboratory and field experiences improve STEM student retention and academic success
Abstract
Formal internship experiences strongly improve student success in the STEM fields. Classical programs like NSF's Research Experiences for Undergraduates are highly successful for traditional and non-traditional students. Moreover when early undergraduate and at-risk (e.g., low income, academically-challenged) students engage in these experiences, their career paths are re-enforced or changed, academic progress and retention improves, and they are encouraged to continue into graduate school. Students build connections to their course-based learning and experience the life of a working scientist. However, NSF formal experiences are relatively expensive to provide (>5000 per student per experience) and are available to fewer than 5% of geoscience majors each year. Although other funded formal internship opportunities exist, they are likely available to no more than 10% of total enrolled geoscience students. These high-quality programs cannot impact enough early undergraduate students to encourage their remaining in science and improve the current overall retention and graduation rates in the US. Savannah State University faculty successfully completed multiple grants funding low-stakes undergraduate field-science experiences. These short-term (semester to year), part-time (5-10h/week) experiences provide similar classroom-to-real-world science connections, offer students direct laboratory and field experiences, build skill sets, and provide a small source of revenue assisting financially-challenged students to stay on campus rather than seeking off-campus employment. For a much lower investment in time and grant resources (500-1500 per student per experience), participant graduation rates exceeded 80%, well above the university 27-34% graduation rate during the same time period. Relatively small infusions of research dollars targeting undergraduate experiences in the field and laboratory could significantly impact long-term student outcomes in STEM disciplines. These findings supported by NSF OCE-1460457, OCE-1156525, GEO-0914680; ONR N00014-12-1-0969.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMED53D0196H
- Keywords:
-
- 0810 Post-secondary education;
- EDUCATION;
- 0825 Teaching methods;
- EDUCATION;
- 0845 Instructional tools;
- EDUCATION;
- 0850 Geoscience education research;
- EDUCATION