Measuring Engagement and Learning Outcomes During a Teacher Professional Development Workshop about Creative Climate Communication
Abstract
Climate science and global climate change are complex topics that require system-level thinking and the application of general science concepts. Identifying effective instructional approaches for improving climate literacy is an emerging research area with important broader impacts. Active learning techniques can ensure engagement throughout the learning process and increase retention of climate science content. Conceptual changes that can be measured as lasting learning gains occur when both the cognitive and affective domain are engaged. Galvanic skin sensors are a relatively new technique to directly measure engagement and cognitive load in science education. We studied the engagement and learning gains of 16 teachers throughout a one-day teacher professional development workshop focused on creative strategies to communicate about climate change. The workshop consisted of presentations about climate science, climate communication, storytelling and filmmaking, which were delivered using different pedagogical approaches. Presentations alternated with group exercises, clicker questions, videos and discussions. Using a pre-post test design we measured learning gains and attitude changes towards climate change among participating teachers. Each teacher wore a hand sensor to measure galvanic skin conductance as a proxy for emotional engagement. We surveyed teachers to obtain self-reflection data on engagement and on their skin conductance data during and after the workshop. Qualitative data provide critical information to aid the interpretation of skin conductance readings. Based on skin conductance data, teachers were most engaged during group work, discussions and videos as compared to lecture-style presentations. We discuss the benefits and limitations of using galvanic skin sensors to inform the design of teacher professional development opportunities. Results indicate that watching videos or doing interactive activities may be the most effective strategies for increasing teachers' knowledge of climate science.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMED31B0282M
- Keywords:
-
- 0805 Elementary and secondary education;
- EDUCATION;
- 0825 Teaching methods;
- EDUCATION;
- 0830 Teacher training;
- EDUCATION;
- 0850 Geoscience education research;
- EDUCATION