Compositional changes in the UCC through time revealed by tungsten isotopes
Abstract
During periods of glaciation, ice scrapes off large areas of Earth's surface. The resulting sediments, termed glacial diamictites, are typically little affected by chemical alteration during their accumulation and lithification. The fine-grained matrix of a diamictite can therefore provide important information about the average composition of a portion of the upper continental crust (UCC) preceding the time of its deposition. Major and trace element studies of diamictites have reported compositional changes in the UCC through Earth's history, documenting changes in its average lithology. Short-lived radiogenic isotope systems are useful tools to further study crustal evolution via diamictites, as small-scale 182W (182Hf → 182W, t½ = 8.9 Ma) and 142Nd (146Nd → 142Nd, t½= 103 Ma) anomalies may reflect mantle or crustal processes that occurred very early in Earth history. We have investigated 182W/184W ratios in thirteen glacial diamictite composites from four different continents. These rocks were deposited during the Archean (3.0 Ga), Proterozoic (2.4, 2.3, 2.2, 0.6 Ga) and Paleozoic (0.3 Ga) in South Africa, as well as during the Proterozoic (2.4, 0.7, 0.6 Ga) in North America, and the Paleozoic (0.3 Ga) in South America. Individual glacial diamictites sample multiple crustal sources, so the isotopic compositions of the diamictites are more representative of the UCC at the time of deposition, than the komatiites and early Archean supracrustal rocks, which have been the focus of most prior studies. Tungsten isotope compositions reveal well-resolved deficits in 182W/184W of as much as 14 ppm in three of the four Archean samples from South Africa. By contrast, there are no clearly resolved deficits in Paleoproterozoic diamictites from the same area, although results for multiple analyses of the same samples suggest that a small deficit of 6 ppm may be present. No anomalies are present in younger diamictites. The Archean diamictites provide additional evidence for considerable heterogeneity in 182W in Archean crustal rocks, consistent with prior studies of individual rock units. The lack of anomalies in younger diamictites suggests that the isotopically heterogeneous nature of 182W in the Archean crust had disappeared by the beginning of the Proterozoic, as with 142Nd. Reasons for the transition remain unclear.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMDI33C..02M
- Keywords:
-
- 1009 Geochemical modeling;
- GEOCHEMISTRY;
- 1025 Composition of the mantle;
- GEOCHEMISTRY;
- 3611 Thermodynamics;
- MINERALOGY AND PETROLOGY;
- 8121 Dynamics: convection currents;
- and mantle plumes;
- TECTONOPHYSICS