Thermal Profile of the Lunar Interior Constrained by Revised Estimates of Concentrations of Heat Producing Elements
Abstract
Constraining the heat producing element (HPE) concentrations of the Moon is important for understanding the thermal state of the interior. The lunar HPE budget is debated to be suprachondritic [1] to chondritic [2]. The Moon is differentiated, thus, each reservoir has a distinct HPE signature complicating this effort. The thermal profile of the lunar interior has been constructed using HPE concentrations of an ordinary chondrite (U = 0.0068 ppm; Th = 0.025 ppm; K = 17 ppm) which yields a conservative low estimate [2, 3, 4]. A later study estimated the bulk lunar mantle HPE concentrations (U = 0.039 ppm; Th = 0.15 ppm; K = 212 ppm) based on measurements of Apollo pyroclastic glasses [5] assuming that these glasses represent the least fractionated, near-primary lunar mantle melts, hence, are the best proxies for capturing mantle composition. In this study, we independently validate the revised estimate by using HPE concentrations [5] to construct a conductive lunar thermal profile, or selenotherm. We compare our conductive profile to the range of valid temperatures. We demonstrate the HPE concentrations reported by [5], when used in a simple 1D spherical thermal conduction equation, yield an impossibly hot mantle with temperatures in excess of 4,000 K (Fig 1). This confirms their revised estimate is not representative of the bulk lunar mantle, and perhaps only representative of a locally enriched mantle domain. We believe that their Low-Ti avg. source estimate (Th = 0.055 ppm, Th/U=4; K/U=1700), with the least KREEP assimilation is the closest representation of the bulk lunar mantle, producing 3E-12 W/kg of heat. This estimate is close to that of the Earth (5E-12 W/kg), indicating that the bulk Earth and lunar mantles are similar in their HPE constituents. We have used the lunar mantle heat production, in conjunction with HPE estimates of the Fe-Ti-rich cumulates (high Ti-source estimate from [5]) and measurements of crustal ferroan anorthite [6], to capture the present-day lunar interior thermal state. We also present plausible internal structures that best match the mass, moment of inertia and bulk silicate Moon composition along this conductive selenotherm. [1] Wanke et al (1973) LPSC; [2] Warren et al (1979) Rev Geophy; [3] Wieczorek et al (2000) JGR; [4] Grimm (2013) JGRP; [5] Hagerty et al (2006) GCA; [6] Peplowski et al (2016) JGR.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMDI21A0393F
- Keywords:
-
- 3672 Planetary mineralogy and petrology;
- MINERALOGY AND PETROLOGY;
- 6207 Comparative planetology;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6296 Extra-solar planets;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 5455 Origin and evolution;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS