Formation and evolution of the near axis 8˚20'N seamount chain: Evidences from the geophysical data analysis
Abstract
The OASIS (Off-Axis Seamount Investigations at Siqueiros) expedition is a multidisciplinary effort to systematically investigate the 8˚20'N Seamount Chain to better understand the melting processes in the southern portion of the 9-10˚N segment of the East Pacific Rise (EPR). The 8˚20'N Seamount Chain extends 160 km west from its initiation, 15km northwest of the EPR-Siqueiros ridge transform intersection (RTI). To investigate the emplacement of the 8˚20'N Seamounts, shipboard EM-122 multibeam, BGM-3 gravity, and towed magnetometer data were collected using the R/V Atlantis in November 2016. Multibeam data show that the seamount chain is characterized by discrete seamounts in the distal portion of the chain, while east of 105˚20' W, the chain is a nearly-continuous volcanic ridge comprised of small cones and coalesced edifices. Free Air Anomalies are used to calculate isostatic anomalies along several profiles crossing the main edifices of the seamount chain, and indicate that the seamounts formed within 100 km of the EPR ridge axis. Excess crustal thickness variations of 0.5 to 1 km, derived from the Residual Mantle Bouguer Anomaly, suggest an increase in melt flux eastward along the chain. Consistently high emplacement volumes are observed east of -105 ˚20' W, 130 km from the ridge axis corresponding with lithosphere younger than 2 Myr. Inverted three-dimensional magnetization data indicate that the seamounts have recorded a series of magnetic reversals along the chain, which correlate to reversals recorded in the surrounding seafloor upon which the seamounts were built. However, reversals along the eastern portion of the chain appear skewed to the west indicating that seamount formation is likely long-lived. While the geophysical observations indicate that the overall seamount chain is age progressive, they suggest coeval volcanism in a region 15-100km from the EPR. The seamounts do not follow absolute plate motions, but are located consistently 15-20 km north of the Siqueiros fracture zone, which further suggests that their formation is linked to the location and tectonic evolution of the Siqueiros-EPR-RTI. These findings have implications for the melt region sourcing the EPR as well as how melt is transported in the vicinity of a fracture zone.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V51D0391R
- Keywords:
-
- 1037 Magma genesis and partial melting;
- GEOCHEMISTRY;
- 3075 Submarine tectonics and volcanism;
- MARINE GEOLOGY AND GEOPHYSICS;
- 3618 Magma chamber processes;
- MINERALOGY AND PETROLOGY;
- 8416 Mid-oceanic ridge processes;
- VOLCANOLOGY