Multi-scale Onland-Offshore Investigations of the New Caledonia Ophiolite, SW Pacific
Abstract
The Peridotite Nappe of New Caledonia is one of the largest ultramafic ophiolite in the World: it represents about one quarter of the 500 x 80 km island of Grande Terre. This extensive upper mantle unit was tectonically emplaced during the Eocene onto the northeastern edge of Zealandia continent. It is weakly deformed because it was not involved in a collision belt after obduction. A dome-shaped Eocene HP/LT metamorphic complex was exhumed across the fore-arc mantle lithosphere in the northern tip of the island. Post-obduction Miocene to Present coral reefs developed in shallow waters around Grande Terre and surrounding islands. In the perspective of a possible onshore/offshore drilling project (IODP/ICDP), we present recent advances in our understanding of offshore extensions of this ophiolite. To the south of New Caledonia, the offshore continuation of the ultramafic allochthon has been identified by dredges and by its geophysical signature as a continuous linear body that extends over a distance of more than 400 km at about 2000m bsl. Such water depths allow an unprecedented seismic reflection imaging of a drowned and well-preserved ophiolite. Seismic profiles show that the nappe has a flat-top, and is capped by carbonate reefs and dissected by several major normal faults. To the east of this presumed ultramafic body, Felicité Ridge is a 30 km wide, 350 km long, dome-shaped ridge, which may be interpreted as the possible southern extension of the HP/LT metamorphic complex observed onshore. Onshore, several 150 to 200 m long cores were drilled in the ophiolite and airborne electromagnetic allowed high-resolution imaging down to 400 m depth. These recent results allow identification of internal thrusts within the peridotite body and more superficial landslides. The analysis of polyphase fracturation and associated serpentinization brings new constraints on the tectonic evolution of the ophiolite and its subsequent weathering pattern. We integrate these data and discuss the chronology of pre-, syn-, and post-obduction tectonic events. But our limited access to the deep parts of the ophiolite calls for the necessity of planning an onshore/offshore deep drilling project.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V43D0561C
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 1034 Hydrothermal systems;
- GEOCHEMISTRY;
- 1037 Magma genesis and partial melting;
- GEOCHEMISTRY;
- 3614 Mid-oceanic ridge processes;
- MINERALOGY AND PETROLOGY