Determination of Oxygen Fugacity using Olivine-Melt Equilibrium: Implications for the Redox States of Mid-Ocean Ridge Basalt, Ocean Island Basalt, and Island Arc Basalt Mantle Source Regions
Abstract
In order to connect volcanic rocks to their mantle sources, it is essential to consider redox equilibria and their dependence on temperature, pressure, chemical composition, and oxygen fugacity. Oxygen fugacity (fO2) is an intensive variable that strongly affects the behavior of those elements in magmas that are sensitive to changes in redox state, such as Fe, and therefore Mg-Fe silicates, such as olivine. Since fO2 plays an important role in fractional crystallization, in principle it is possible to estimate fO2 from analyses of olivine in equilibrium with the melt. This research describes a new method based on this principle called the Olivine-Melt Equilibrium Method. The Fe3+ and Fe2+ contents of melt in equilibrium with olivine are calculated from the relationship of Gee and Sack (1988) that describes the partitioning of Mg and Fe2+ between olivine and melt. The Fe3+ and Fe2+ contents of the melt are then used to calculate the fO2 at which olivine and melt are in equilibrium using the model of Kress and Carmichael (1991) for the relationship between Fe3+/Fe2+ , fO2, T, P, and melt composition. We have calculated oxygen fugacities from published analyses of coexisting glass and olivine pairs in 1020 samples from three different tectonic settings. The results (expressed as ΔFMQ) for Mid-Ocean Ridge Basalts from the Mid-Atlantic Ridge (-1.55 ± 0.75), the East Pacific Rise (-0.65 ± 0.51), the Juan de Fuca Ridge (-0.77 ± 0.42), and the Galápagos Spreading Center (+0.08 ± 0.48) agree with results obtained using other methods and average -1.09 ± 0.89. Ocean Island Basalts from Iceland and the Galápagos Islands (ΔFMQ = -0.43 ± 0.71 and -0.33 ± 0.35 respectively) also yield values consistent with those obtained by other methods and fall in the same range as MORB. However, lavas from the Canary Islands are more oxidized than typical MORB and OIB, with values (average = +0.68 ± 0.52) approaching those for island arc magmas. We obtain ΔFMQ = +1.03 ± 0.52 for olivine-melt pairs from Sunda arc basalts. The results for MORB and OIB potentially provide evidence for redox heterogeneity in the mantle, possibly as the result of crustal recycling. However it is necessary to evaluate the possibility that fO2 changes during magma ascent before concluding that the oxygen fugacities of erupted magmas directly reflect those of the mantle source regions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V33D0555P
- Keywords:
-
- 3640 Igneous petrology;
- MINERALOGY AND PETROLOGY;
- 3660 Metamorphic petrology;
- MINERALOGY AND PETROLOGY;
- 5225 Early environment of Earth;
- PLANETARY SCIENCES: ASTROBIOLOGY;
- 8439 Physics and chemistry of magma bodies;
- VOLCANOLOGY