Generating Melt During Exhumation of Continental Crust from Ultrahigh Pressure (UHP) Conditions
Abstract
Hydrate breakdown rather than fluid-present melting is commonly cited during exhumation of UHP continental crust, but may have been overemphasized in relation to petrographic evidence. In this study from the central Sulu belt, China, we posit that dm- to m-scale dikes of leucosome in stromatic migmatite, formerly UHP eclogite, crystallized from hydrous melt derived by evolution of supercritical fluid as it drained through exhuming crust and increased in solute content. Leucosomes comprise Qz + Ph + Ab + Aln/Ep + Grt. Overgrowths of Zrn on inherited cores and new grains crystallized at ca. 223-219 Ma, within the age range of HP eclogite facies recrystallization in the belt. Si-in-Ph/Ti-in-Zrn thermobarometry yields crystallization conditions of 3.0-2.5 GPa at 830-770 °C. Compositions are granitic with normalized TE patterns enriched in LREE relative to HREE and enriched in LILE relative to HFSE, features consistent with crystallization from crustally derived hydrous melt. The leucosomes have Sr-Nd isotope compositions intermediate between host eclogites and surrounding gneisses. At the metamorphic peak, the source rocks were likely fluid deficient or fluid absent. During exhumation from UHP conditions, structural water stored in nominally anhydrous minerals during the prograde evolution was exsolved to form a grain boundary supercritical fluid in eclogite and gneiss. By migrating from grain boundaries into channels and draining from the volumetrically dominant gneiss through eclogite, the fluid acquired a blended Sr-Nd isotope composition intermediate between end-members. Concomitantly, the ascending fluid evolved to a denser, more viscous and more polymerized hydrous melt by dissolution of the silicate matrix. Trapped around the transition from UHP to HP eclogite facies conditions, the melt crystallized by diffusive loss of water to the host eclogite. Aggregates of Pl + Bt around Ph and thin films and cuspate veinlets/patches of Kfs along grain boundaries in leucosomes are consistent with subsequent low degrees of melting by Ph breakdown. Phase equilibria modeling indicates melting occurred during the transition from HP eclogite to amphibolite facies, with final subsolidus equilibration at 1.04-0.87 GPa and T <640 °C. However, Ph-breakdown melting was not the mechanism by which the leucosomes formed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V24B..05B
- Keywords:
-
- 3660 Metamorphic petrology;
- MINERALOGY AND PETROLOGY;
- 8160 Rheology: general;
- TECTONOPHYSICS;
- 8178 Tectonics and magmatism;
- TECTONOPHYSICS;
- 8412 Reactions and phase equilibria;
- VOLCANOLOGY