Meeting the Continental Crust: the Hidden Olivine Trauma in Subduction Settings
Abstract
In a conventional framework, olivine zonation represents concentric growth from an evolving liquid. Alternatively, it has been suggested (e.g. Welsch et al. 2014) that olivine develop dendritic textures and compositional discontinuities due to rapid growth and boundary layer effects, respectively, where any complex zoning is quickly erased through diffusive re-equilibration in the high temperature magmatic environment. In particular, olivine crystals from large volcanic centers in convergent margins rarely preserve such dendritic textures and complex zoning due prolonged magma residence. Small volume, mafic monogenetic vents may bypass such crustal re-equilibration and potentially record the otherwise elusive early olivine growth history. We selected tephra deposits from Los Hornitos, in the Andean arc of Central Chile (35.5˚S), that represents primitive magmas ( 15 wt.% MgO) and contain magnesian olivines (Fo>88) hosting quenched melt inclusions. We obtained detailed quantitative EPMA zoning profiles and measured volatile contents (H, C, S, Cl) in the co-existing melt inclusions. Furthermore, we analyzed mineral morphologies connecting compositional zoning with growth textures. We find that 40% of the olivine crystals retain dendritic shapes while the others are polyhedral with trapped melt inclusions and cavities. The polyhedral crystals are normally zoned (Fo92 to Fo88; Ni 4000 ppm to 1000 ppm), however an oscillatory zonation depicted by concentric -coupled Fo and Ni- enriched layers exist and therefore even those crystals still preserve also a more complete growth history. The related melt inclusions yield values of up to 6000 ppm of S. Such zonation may imply sudden growth during elevated degrees of undercooling (-ΔT > 60°C) as the magmas transit from the hot mantle to the cooler conditions in the crust. Moreover, the preservation of such Fo and Ni zonation requires limited time between crystal growth and eruption. The elevated S content in melt inclusions may suggest that the crystallization occurred in the lower crust or upper mantle, and thus a quick passage through the arc crust that retains the normally hidden dendritic trauma the olivine experiences during its transfer from the mantle to the crust. References: Welsch et al 2014. Geology v.42 p.867-870
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V23B0485S
- Keywords:
-
- 3630 Experimental mineralogy and petrology;
- MINERALOGY AND PETROLOGY;
- 3640 Igneous petrology;
- MINERALOGY AND PETROLOGY;
- 8439 Physics and chemistry of magma bodies;
- VOLCANOLOGY;
- 8499 General or miscellaneous;
- VOLCANOLOGY