Evaluating the cause(s) of Ti, Ta, and Nb (TITAN) enrichment in ocean island basalts using LA-ICP-MS
Abstract
Titanium, Ta, and Nb (TITAN) enrichments in some ocean island basalt (OIB) lavas have been attributed to mantle source, or to partial melting and fractional crystallization Iprocesses. TITAN anomalies in the mantle sources of OIB would imply these trace elements can be used to track mantle heterogeneity in a manner similar to some isotopic tracers (e.g., He, Os, W), whereas a petrogenetic process to account for TITAN anomalies would be more prosaic. To further evaluate this issue, we have performed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of phenocryst phases and matrix on petrographically well-characterized polished-sections of OIB samples. These samples come from five ocean island archipelagos (Canary Islands, the Azores, Samoa, Tubuai'i, Réunion), and are used to assess the citing of Ti, Ta, Nb and associated trace-elements within bulk-rocks. We find poorly-defined but broadly positive correlations between olivine and clinopyroxene modal abundance and Ta/Ta*, Nb/Nb*, but no correlation with Ti/Ti* (where, for example, Ti/Ti* is the primitive mantle normalized ratio, written as: Ti/√[Sm × Tb]). Abundances of olivine and clinopyroxene with samples spanned a wide-range, from 0-70 modal %. We determined trace-element abundances by LA-ICP-MS in a sub-set of samples for major (olivine, clinopyroxene) and minor (e.g., magnetite) phenocryst phases, and for the typically vitrophyric to partly crystallized matrices of samples. Modal reconstruction relative to the bulk rock are broadly similar, although the Ta/Ta*, Nb/Nb* and, especially Ti/Ti* anomalies cannot always be reproduced, especially if Fe-Ti oxide phases were not analyzed due to their limited presence within polished sections. LA-ICP-MS analyses reveal that, while TITAN anomalies are dominantly preserved in the matrix and oxide phases, the role of fractional crystallization of olivine and clinopyroxene is a controlling factor in the magnitude of TITAN anomaly generated. Our results support suggestions that Ti, Ta and Nb are affected by partial melting, assimilation and fractional crystallization processes during magma evolution, generating more prominent TITAN anomalies in volcanic samples than their mantle sources.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V23B0480L
- Keywords:
-
- 3630 Experimental mineralogy and petrology;
- MINERALOGY AND PETROLOGY;
- 3640 Igneous petrology;
- MINERALOGY AND PETROLOGY;
- 8439 Physics and chemistry of magma bodies;
- VOLCANOLOGY;
- 8499 General or miscellaneous;
- VOLCANOLOGY