Photogrammetric Analysis of Changes in Crater Morphology at Telica Volcano, Nicaragua from 1994 to 2016
Abstract
Understanding processes that lead to volcanic eruptions is paramount for predicting future volcanic activity. Telica volcano, Nicaragua is a persistently active volcano with hundreds of daily, low magnitude and low frequency seismic events, high-temperature degassing, and sub-decadal VEI 1-3 eruptions. The phreatic vulcanian eruptions of 1999, 2011, and 2013, and phreatic to phreatomagmatic vulcanian eruption of 2015 are thought to have resulted by sealing of the hydrothermal system prior to the eruptions. Two mechanisms have been proposed for sealing of the volcanic system, hydrothermal mineralization and landslides covering the vent. These eruptions affect the crater morphology of Telica volcano, and therefore the exact mechanisms of change to the crater's form are of interest to provide data that may support or refute the proposed sealing mechanisms, improving our understanding of eruption mechanisms. We use a collection of photographs between February 1994 and May 2016 and a combination of qualitative and quantitative photogrammetry to detect the extent and type of changes in crater morphology associated with 2011, 2013, and 2015 eruptive activity. We produced dense point cloud models using Agisoft PhotoScan Professional for times with sufficient photographic coverage, including August 2011, March 2013, December 2015, March 2016, and May 2016. Our May 2016 model is georeferenced, and each other point cloud was differenced using the C2C tool in CloudCompare and the M3C2 method (CloudCompare plugin) Lague et al. (2013). Results of the qualitative observations and quantitative differencing reveal a general trend of material subtraction from the inner crater walls associated with eruptive activity and accumulation of material on the crater floor, often visibly sourced from the walls of the crater. Both daily activity and VEI 1-3 explosive events changed the crater morphology, and correlation between a landslide-covered vent and the 2011 and 2015 eruptive sequences exists. Though further study and integration with other date sets is required, a positive feedback mechanism between accumulation of material blocking the vent, eruption, and subsequent accumulation of material to re-block the vent remains possible.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V23A0454H
- Keywords:
-
- 1207 Transient deformation;
- GEODESY AND GRAVITY;
- 8159 Rheology: crust and lithosphere;
- TECTONOPHYSICS;
- 8434 Magma migration and fragmentation;
- VOLCANOLOGY;
- 8485 Remote sensing of volcanoes;
- VOLCANOLOGY