The propagation of GPS signals through electrically charged plumes
Abstract
Probing the interior dynamics of eruptive columns using electrostatic processes generated within the flows themselves has garnered much interest in the recent years. Indeed, large eruptions are often accompanied by brilliant displays of lightning, testifying to the high potentials that can be accumulated by a diverse set of electrification mechanisms. Unfortunately, lightning on its own cannot be used as a general remote sensing tool because not all volcanic eruptions produce spark discharges. As pointed out by McNutt and Williams, 2010, only 30-35% of volcanoes maintain lightning storms. The absence of lightning in two thirds of all eruptions indicates that most volcanoes produce flows with 1) inefficient or limited granular charging processes or 2) dynamics that do not promote the charge separation that sets up coherent electric fields needed for lightning. Yet, even if the prerequisites for spark discharges are not met, it is difficult to argue for plumes which are completely electrostatically neutral. The problems permeating passive electromagnetic sensing may be overcome through the use of active methods which involve interrogating charged volcanic plumes with electromagnetic radiation. The scattering of electromagnetic waves has been a common method to retrieve the physical properties of collections of particles, specifically those which cannot be accessed directly. By modifying the standard Mie formulation, Klavcka et al., 2007 showed that surface charge may influence the extinction properties of grains if such particles are much smaller than the wavelength of the incident radiation. Based on this model, we posit that the properties of charged clouds of particles can be readily assessed using robust, existing infrastructure-the Global Positioning System. In the present work, we numerically explore the manner in which electrostatic charge on particles affect the propagation of electromagnetic waves through volcanic plumes. We show that, for the range of complex dielectric constants measured in volcanic ash, the extinction efficiency of a charged particle is significantly larger than that associated with an equivalent neutral particle. Thus, this work represents the theoretical framework for a new method to explore charging in volcanic plumes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V13C0397M
- Keywords:
-
- 0370 Volcanic effects;
- ATMOSPHERIC COMPOSITION AND STRUCTURE;
- 8455 Tephrochronology;
- VOLCANOLOGY;
- 8488 Volcanic hazards and risks;
- VOLCANOLOGY