Characteristics and Significance of Magma Emplacement Horizons, Black Sturgeon Sill, Nipigon, Ontario
Abstract
Spatial scales strongly control the timescales of processes in igneous intrusions, particularly through the thermal evolution of the magma, which in turn governs the evolution of crystallinity, viscosity, and other important physical and chemical properties of the system. In this study, we have collected a highly detailed data set comprising geochemical (bulk rock composition), textural (size and alignment of plagioclase crystals), and mineralogical (modal abundance) profiles through the central portion of the 250 m thick Black Sturgeon diabase sill. In this data, we have identified characteristic signals in texture (soft and somewhat diffuse chills), composition (reversals in differentiation trends), and mineralogy (olivine accumulations), all coinciding and recurring at roughly 10 meter intervals. Based on these signatures, we are able to map out multiple zones representing discrete pulses of magma that were emplaced sequentially as the intrusion was inflated. Simple thermal calculations suggest that each 10 meters of new crystallization would require repose times on the order of 10-100 years. To build up 250 meters of magma at this rate would only require approximately 250-2500 years, significantly less than the thermal lifetime of the entire sill. The soft chills we observe in the Black Sturgeon sill are therefore consistent with a system that remained warm throughout the emplacement process. Successive pulses were injected into partially crystalline mush, rather than pure liquid (which would result in hybridization) or solid (which would produce sharp hard chills). Episodic emplacement is by now widely recognized as a fundamental process in the formation of large felsic magma chambers; our results suggest that this also may be an important consideration in understanding the evolution of smaller mafic intrusions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V11C0362Z
- Keywords:
-
- 8410 Geochemical modeling;
- VOLCANOLOGY;
- 8412 Reactions and phase equilibria;
- VOLCANOLOGY;
- 8413 Subduction zone processes;
- VOLCANOLOGY;
- 8439 Physics and chemistry of magma bodies;
- VOLCANOLOGY