Shear Wave Structure of Mount St. Helens, WA Region From Ambient Noise, Earthquake Surface Waves and Receiver Functions
Abstract
Mount St. Helens (MSH) lies 50 km trenchward of the main arc front in Cascadia. The imaging Magma Under St. Helens (iMUSH) experiment probes its magmatic plumbing system in the mid to lower crust to understand how magmas could be generated in this setting. A 70-element broadband array was deployed for 2 years with a 10 km station spacing and 100 km aperture. Ambient noise and earthquake surface waves provide fundamental-mode Rayleigh wave phase velocity maps of the region from 0.01 to 0.18 Hz. From these, shear velocity (Vs) is estimated from 0 to 80 km depth. Initial attempts at integrating ambient-noise and earthquake datasets have been complicated by the lower resolution of earthquake-derived phase velocities compared to ambient noise, and care is being taken to minimize this incompatibility. Joint inversions with receiver functions help resolve these ambiguities and velocity contrasts across interfaces. For depths of 0-5 km, fast Vs zones (3.3 km/s) are imaged that correspond well with mapped plutons (Spud Mountain and Spirit Lake). Crust at 10-30 km depth has higher Vs (>3.9 km/s) west of MSH than east and north of it (Vs < 3.7 km/s). Crustal temperature variations from a cold forearc to a hot volcanic crust could partly explain this crustal velocity pattern. However, the exceedingly high Vs west of MSH requires a strong change in crustal composition, most likely revealing the east edge of the mafic Siletzia terrane with a predicted Vs similar to that observed. Just below the Moho, Vs variations are much smaller. The resulting Vs contrast across the Moho from surface waves and receiver functions is weak in the forearc and strong beneath the arc volcanoes. This pattern was previously interpreted as due to a serpentinized cold nose of the mantle. However, the anomalously high crustal velocities we observe west of MSH contribute to this forearc Moho absence more than mantle velocity variations, indicating that crustal geology enhances or dominates an effect attributed to mantle hydration. These results confirm that MSH lies on the edge of a notably cold forearc, exactly where crustal composition varies markedly. This sharp crustal terrane boundary immediately west of MSH may help localize volcanism.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T51E0542C
- Keywords:
-
- 1209 Tectonic deformation;
- GEODESY AND GRAVITY;
- 3006 Marine electromagnetics;
- MARINE GEOLOGY AND GEOPHYSICS;
- 3050 Ocean observatories and experiments;
- MARINE GEOLOGY AND GEOPHYSICS;
- 8170 Subduction zone processes;
- TECTONOPHYSICS