Detection of Repeating Earthquakes within the Cascadia Subduction Zone Using 2013-2014 Cascadia Initiative Amphibious Network Data
Abstract
It is well known that subduction zones create the largest earthquakes in the world, like the magnitude 9.5 Chile earthquake in 1960, or the more recent 9.1 magnitude Japan earthquake in 2011, both of which are in the top five largest earthquakes ever recorded. However, off the coast of the Pacific Northwest region of the U.S., the Cascadia subduction zone (CSZ) remains relatively quiet and modern seismic instruments have not recorded earthquakes of this size in the CSZ. The last great earthquake, a magnitude 8.7-9.2, occurred in 1700 and is constrained by written reports of the resultant tsunami in Japan and dating a drowned forest in the U.S. Previous studies have suggested the margin is most likely segmented along-strike. However, variations in frictional conditions in the CSZ fault zone are not well known. Geodetic modeling indicates that the locked seismogenic zone is likely completely offshore, which may be too far from land seismometers to adequately detect related seismicity. Ocean bottom seismometers, as part of the Cascadia Initiative Amphibious Network, were installed directly above the inferred seismogenic zone, which we use to better detect small interplate seismicity. Using the subspace detection method, this study looks to find new seismogenic zone earthquakes. This subspace detection method uses multiple previously known event templates concurrently to scan through continuous seismic data. Template events that make up the subspace are chosen from events in existing catalogs that likely occurred along the plate interface. Corresponding waveforms are windowed on the nearby Cascadia Initiative ocean bottom seismometers and coastal land seismometers for scanning. Detections that are found by the scan are similar to the template waveforms based upon a predefined threshold. Detections are then visually examined to determine if an event is present. The presence of repeating event clusters can indicate persistent seismic patches, likely corresponding to areas of stronger coupling. This work will ultimately improve the understanding of CSZ fault zone heterogeneity. Preliminary results gathered indicate 96 possible new events between August 2, 2013 and July 1, 2014 for four target clusters off the coast of northern Oregon.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T51E0532K
- Keywords:
-
- 1209 Tectonic deformation;
- GEODESY AND GRAVITY;
- 3006 Marine electromagnetics;
- MARINE GEOLOGY AND GEOPHYSICS;
- 3050 Ocean observatories and experiments;
- MARINE GEOLOGY AND GEOPHYSICS;
- 8170 Subduction zone processes;
- TECTONOPHYSICS