The Transition from Volcanic to Rift Dominated Crustal Breakup - From the Vøring Plateau to the Lofoten Margin, Norway
Abstract
The Vøring Plateau was part of the Northeast Atlantic igneous province (NAIP) during early Cenozoic crustal breakup. Crustal breakup at the Vøring Plateau occurred marginal to the deep Cretaceous basins on the shelf, with less extension of the crust. Intrusive magmatism and oceanic crust up to three times normal thickness caused a period of sub-aerial magmatism around breakup time. The transition to the Lofoten Margin is rapid to a deep-water plain. Still, there is some excess magmatism north of this transition, where early oceanic crustal thickness is reduced to half of that of the Vøring Plateau 150 km away. Our estimates of the earliest seafloor spreading rates using new ship-track magnetic profiles on different margin segments offer a clue to what caused this rapid transition. While crustal breakup occurred within the magnetic polarity C24r in other parts of the NAIP, there is a delayed breakup for the Lofoten/Vesterålen margin. Modeling of the earliest seafloor spreading with geomagnetic reversals, indicate a breakup within C24n.3n (anomaly 24b), approximately 1 m.y. later. Both old wide-angle seismic models (from Ocean Bottom Seismometers) off southern Lofoten and a newly published profile farther north show a strongly extended outer margin. Applying early seafloor half-spreading rates ( 30 mm/y) from other NAIP margin segments for 1 m.y. can account for 30 km extra extension, giving a factor of three crustal thinning, and gives a high strain rate of 3.2 ·10-14. Crustal breakup at the magma-poor Iberian Margin occurred at a low strain rate of 4.4·10-15, allowing the ascending mantle to cool, favoring tectonic extension over magmatism. Similar strain rates are found within the main Ethiopian Rift, but there is much magmatism and crustal separation is dominated by dike injection. Mantle tomography models show an exceptionally low seismic velocity below the area interpreted as an unusually hot upper mantle, which will favor magmatism. The transition from the Vøring Plateau to the Lofoten Margin can therefore be explained by the presence/absence of hot mantle plume material under the different segments during rifting. Only after significant extension and close to crustal breakup time did a minor amount of plume material reach the Lofoten/Vesterålen margin to cause some elevated but short-lived excess magmatism there.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T51B0466B
- Keywords:
-
- 1209 Tectonic deformation;
- GEODESY AND GRAVITY;
- 7230 Seismicity and tectonics;
- SEISMOLOGY;
- 8109 Continental tectonics: extensional;
- TECTONOPHYSICS;
- 8178 Tectonics and magmatism;
- TECTONOPHYSICS