Uppermost Mantle Deformation and Hydration Beneath the Gorda Plate Inferred from Pn Travel-times
Abstract
Deformation of the uppermost oceanic mantle is thought to occur primarily in response to divergence beneath mid-ocean ridges with little subsequent deformation off-axis. A notable exception to this is the Gorda plate where sinuous magnetic anomalies and numerous intra-plate earthquakes indicate diffuse, plate-wide deformation. Thus, the Gorda region provides a natural laboratory to investigate the non-rigid behavior of tectonic plates. We invert Pn (the seismic head wave refracted below the Moho) arrival times from 770 local earthquakes for epicentral and mantle anisotropic velocity parameters to understand how the surficial pattern of deformation translates into the uppermost 10 km of the mantle. Specifically, we ask does the pattern of seismic anisotropy reflect spreading-induced fabrics or has it been re-worked by extensive deformation of the Gorda plate? If it has been re-worked, does it reflect pervasive faulting of the uppermost mantle or plate-scale ductile deformation? And, are isotropic velocities anomalously slow suggesting significant mantle hydration? Preliminary results show that the average mantle velocity beneath Gorda is 7.55 km/s. Velocities vary azimuthally by 4% and the fast-propagation direction is sub-parallel to Pacific absolute plate motion (APM). In comparison, the uppermost mantle beneath the Juan de Fuca (JdF) plate is characterized by 4.6% anisotropy with a mean velocity of 7.85 km/s [VanderBeek and Toomey, 2017]; the fast propagation direction trends between the paleo-spreading direction and JdF APM. The reduced Gorda velocities may indicate a greater extent of fault-controlled hydration of the shallow mantle compared to the JdF plate. In both regions, the anisotropic structure argues against the notion that shallow mantle deformation ceases away from the ridge. Instead, shearing across Gorda due to differential motion between the Pacific and JdF plates [e.g. Bodmer et al., 2015] may cause broad scale ductile deformation and the realignment of shallow mantle fabrics. Beneath the JdF plate, the anisotropic signal is inferred to track the evolution of mantle flow as it evolves from divergence at the ridge to simple shear that is more closely aligned with APM. We discuss the rheologic implications of these observations and the patterns of mantle flow and deformation in Cascadia.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T42C..03V
- Keywords:
-
- 1209 Tectonic deformation;
- GEODESY AND GRAVITY;
- 3006 Marine electromagnetics;
- MARINE GEOLOGY AND GEOPHYSICS;
- 3050 Ocean observatories and experiments;
- MARINE GEOLOGY AND GEOPHYSICS;
- 8170 Subduction zone processes;
- TECTONOPHYSICS