Vertebrate Fossils Imply Paleo-elevations of the Tibetan Plateau
Abstract
The uplift of the Tibetan Plateau remains unclear, and its paleo-elevation reconstructions are crucial to interpret the geodynamic evolution and to understand the climatic changes in Asia. Uplift histories of the Tibetan Plateau based on different proxies differ considerably, and two viewpoints are pointedly opposing on the paleo-elevation estimations of the Tibetan Plateau. One viewpoint is that the Tibetan Plateau did not strongly uplift to reach its modern elevation until the Late Miocene, but another one, mainly based on stable isotopes, argues that the Tibetan Plateau formed early during the Indo-Asian collision and reached its modern elevation in the Paleogene or by the Middle Miocene. In 1839, Hugh Falconer firstly reported some rhinocerotid fossils collected from the Zanda Basin in Tibet, China and indicated that the Himalayas have uplifted by more than 2,000 m since several million years ago. In recent years, the vertebrate fossils discovered from the Tibetan Plateau and its surrounding areas implied a high plateau since the late Early Miocene. During the Oligocene, giant rhinos lived in northwestern China to the north of the Tibetan Plateau, while they were also distributed in the Indo-Pakistan subcontinent to the south of this plateau, which indicates that the elevation of the Tibetan Plateau was not too high to prevent exchanges of large mammals; giant rhinos, the rhinocerotid Aprotodon, and chalicotheres still dispersed north and south of "Tibetan Plateau". A tropical-subtropical lowland fish fauna was also present in the central part of this plateau during the Late Oligocene, in which Eoanabas thibetana was inferred to be closely related to extant climbing perches from South Asia and Sub-Saharan Africa. In contrast, during the Middle Miocene, the shovel-tusked elephant Platybelodon was found from many localities north of the Tibetan Plateau, while its trace was absent in the Siwaliks of the subcontinent, which implies that the Tibetan Plateau had uplifted high enough to obstruct the exchange of mammals in the Middle Miocene. The Pliocene mammalian fauna of the Zanda Basin showed initiation of cold-adapted lineages that predate Ice Age megafauna, which implied that the Tibetan Plateau reached its modern elevation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T42B..06D
- Keywords:
-
- 3355 Regional modeling;
- ATMOSPHERIC PROCESSES;
- 8110 Continental tectonics: general;
- TECTONOPHYSICS;
- 8177 Tectonics and climatic interactions;
- TECTONOPHYSICS