Detailed seismic velocity structure of the ultra-slow spread crust at the Mid-Cayman Spreading Center from travel-time tomography and synthetic seismograms
Abstract
The Mid-Cayman Spreading Center (MCSC), an ultraslow-spreading center in the Caribbean Sea, has formed highly variable oceanic crust. Seafloor dredges have recovered extrusive basalts in the axial deeps as well as gabbro on bathymetric highs and exhumed mantle peridotite along the only 110 km MCSC. Wide-angle refraction data were collected with active-source ocean bottom seismometers in April, 2015, along lines parallel and across the MCSC. Travel-time tomography produces relatively smooth 2-D tomographic models of compressional wave velocity. These velocity models reveal large along- and across-axis variations in seismic velocity, indicating possible changes in crustal thickness, composition, faulting, and magmatism. It is difficult, however, to differentiate between competing interpretations of seismic velocity using these tomographic models alone. For example, in some areas the seismic velocities may be explained by either thin igneous crust or exhumed, serpentinized mantle. Distinguishing between these two interpretations is important as we explore the relationships between magmatism, faulting, and hydrothermal venting at ultraslow-spreading centers. We therefore improved our constraints on the shallow seismic velocity structure of the MCSC by modeling the amplitude of seismic refractions in the wide-angle data set. Synthetic seismograms were calculated with a finite-difference method for a range of models with different vertical velocity gradients. Small-scale features in the velocity models, such as steep velocity gradients and Moho boundaries, were explored systematically to best fit the real data. With this approach, we have improved our understanding of the compressional velocity structure of the MCSC along with the geological interpretations that are consistent with three seismic refraction profiles. Line P01 shows a variation in the thinness of lower seismic velocities along the axis, indicating two segment centers, while across-axis lines P02 and P03 show variations in igneous crustal thickness and exhumed mantle in some areas.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T33D0765H
- Keywords:
-
- 3017 Hydrothermal systems;
- MARINE GEOLOGY AND GEOPHYSICS;
- 3035 Midocean ridge processes;
- MARINE GEOLOGY AND GEOPHYSICS;
- 8163 Rheology and friction of fault zones;
- TECTONOPHYSICS;
- 8178 Tectonics and magmatism;
- TECTONOPHYSICS