Tomotectonic constraints on deformation of Cordilleran North America since Late Jurassic
Abstract
Seismic tomography reveals detailed mantle structure beneath North America, largely thanks to USArray. TWO massive composite slabs are recognized down to 2000 km depth and their topologies are combined with quantitative plate reconstructions back to the breakup of Pangea using Atlantic and Pacific magnetic isochrons. This tomotectonic analysis reveals evolving arc/trench-plate geometries of a vast archipelago/microcontinent and ocean plateau that were overridden by North America, and an explanation for Cordilleran deformation episodes. As Pangea fragmented, subduction reconfigured from EAST-directed beneath the continent (during final growth of the Intermontane Superterrane, IMS, or "AltaBC"), to WEST-directed beneath an intraoceanic, massive arc chevron (MAC). MAC trenches were stationary within a mantle reference frame, as indicated by near-vertical slab walls 4-7x as thick as mature ocean lithosphere, and its trenches were >10,000 km long. East-pointing MAC apex was located 2000-4000 km off Pangea's west coast where MAC arc was built atop the Insular superterrane (INS, or "BajaBC"), a microcontinent extending >2600 km southwards from the apex. Ocean lithosphere between the MAC apex and west-drifting North America was consumed by 155 Ma. INS, comparable in length to the Indian subcontinent, initially collided with the leading edge of North America/IMS and generated "Nevadan" deformation. Diachronous Sevier deformation followed as MAC was driven farther into the continental margin and raked southward (sinistral offsets w.r.t. North America). By 130 Ma, with large segments accreted and MAC geometry breaking down, subduction was forced to jump outboard (westward) of MAC. The Franciscan accretionary complex marks a return to eastward/Andean-style subduction (of the Farallon plate). A remarkably complete analogue for collision at 130 Ma is found in modern Australia's override of arcs to its north. Rapid northward transport of BajaBC w.r.t. North America 90-50 Ma is attributed to arrival of the buoyant Shatsky conjugate plateau on the Farallon plate 90 Ma, which coupled with BajaBC lithosphere, as recorded by slab truncation, paleomagnetic measurements, an extinguished Sierra Nevada arc (80 Ma), subducted sediments underplated far inboard of the margin, and Laramide deformation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T21D..05M
- Keywords:
-
- 8104 Continental margins: convergent;
- TECTONOPHYSICS;
- 8107 Continental neotectonics;
- TECTONOPHYSICS;
- 8123 Dynamics: seismotectonics;
- TECTONOPHYSICS;
- 8164 Stresses: crust and lithosphere;
- TECTONOPHYSICS