Seismic Tomography of the Northwest Himalayas, Western Syntaxis and Pamir-Hindu Kush Region: Implications for Underlying Geodynamics
Abstract
Travel time tomography of the study region using regional as well as local earthquake data illuminate a very heterogeneous structure of this geologically and tectonically complex region. The tomographic image is well resolved up to 150 km depth in the Western Himalayas and up to 300 km depth in the Pamir and Hindu Kush region. The top low velocity anomaly imaged up to 80 km depth correlates well with the thicker crust with deeper low density roots under the high mountains in the northwest Himalayas as well as in the Pamir and Hindu Kush region. Average crustal thickness increases from south to north in the Himalayas as well as along the tectonic trend of the Himalayas. This might be an effect of first collision between Indian and Eurasian plates in the NW and then subsequent anticlockwise rotation of Indian plate, leading to crumpling of the crust. This could also be due to variable thickness of more rigid portion of the incoming crust of Indian plate. The Indian lithospheric slab is imaged as a gently underthrusting high velocity anomaly under the northwest Himalayas and subducted Indian lithospheric slab which follows the trend of intermediate depth seismicity under the Pamir and Hindu Kush region. On the other hand beneath the Pamir-Tien Shan the dipping high velocity anomaly which follows the trend of intermediate depth seismicity, represents the remnant of the southward subducted Asian slab. In the southwest of Hindu Kush the Indian lithospheric slab rolls over and overturns at a depth of 250 km and dips southward. The Delhi-Haridwar Ridge (DHR) and Salt Ranges orthogonal to the strike of the Himalayas are well imaged as high velocity structures. The DHR is butting against the northwest Himalayas that led to ramming and locally buckling of the crust below the Higher Himalayas just NE of DHR. Seismicity pattern follows this trend of the crust. It shows for the first time the effect of ramming of the Himalayas by DHR and most importantly how the Indian plate progressively bend downward towards west from the location of DHR to Pamir-Hindukush region.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T13C0547R
- Keywords:
-
- 8110 Continental tectonics: general;
- TECTONOPHYSICS;
- 8120 Dynamics of lithosphere and mantle: general;
- TECTONOPHYSICS;
- 8199 General or miscellaneous;
- TECTONOPHYSICS