Crustal velocity structure of the Northern Victoria Land, Antarctica, from ambient seismic noise tomography
Abstract
A shear wave velocity model of the Northern Victoria Land, Antarctica, was derived using Rayleigh-wave group velocity dispersions estimated from the cross correlation of ambient seismic noise. The continuous data, from January to November 2015, recorded on 29 broadband stations operated by Korea Polar Research Institute and Alabama University were used for retrieving the fundamental mode Rayleigh-wave Green's functions of each station pair. Rayleigh-wave group dispersions at period ranging from 3 to 23 s were determined by applying the multi-filter analysis technique. The measured group velocities were inverted to obtain 2-D group velocity maps using a fast marching method. We constructed a pseudo-3-D shear velocity model of the study region using 1-D shear velocity inversions at each node followed by a linear interpolation. The resulting shear velocity maps and cross-sections showed the significant velocity differences in the crust across the East Antarctica, Transantarctic Mountains, and the coastal region. The velocity changes are well correlated with the aeromagnetic lineaments, especially in shallow depth. The velocities in the Transantarctic Mountains are relatively high at shallow depth and lower at deeper depth, while those of the coastal region are relatively low in shallow depth and higher at deeper depth, implying thin crust over this area.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T13B0513Y
- Keywords:
-
- 0726 Ice sheets;
- CRYOSPHERE;
- 9310 Antarctica;
- GEOGRAPHIC LOCATION;
- 9315 Arctic region;
- GEOGRAPHIC LOCATION;
- 8110 Continental tectonics: general;
- TECTONOPHYSICS