Cluster analysis applied to localized dispersion curves in East Asia: the limits of surface wave resolution
Abstract
We have measured Rayleigh wave group velocity dispersion curves from one year of station-pair cross-correlations of continuous vertical-component broadband data from 1082 seismic stations in regional networks across China, Korea, Taiwan, and Japan for the year 2011. We use the measurements to map local dispersion anomalies for periods in the range 6-40 s. We combined our ambient noise data set with the earthquake group velocity data set of Ma et al. (2014), and then applied agglomerative hierarchical clustering to the localized dispersion curves. We find that the dispersion curves naturally organize themselves into distinct tectonic regions. For our distribution of interstation distances, only 8 distinct regions need to be defined. Additional clusters reduce the overall data misfit by increasingly smaller amounts. The size and number of clusters needed to suitably predict the data may give an indication of the resolving power of the data set. The regions that emerge from the cluster analysis include Tibet, the Sea of Japan, the South China Block and the Korean peninsula, the Ordos and Yangtze cratons, and Mesozoic rift basins such as the Songliao, Bohai Bay and Ulleung basins. We also performed a traditional inversion for 3D S-velocity structure, and the resulting model fits the data as well as the 8-cluster model, while both models fit the earthquake data and ambient noise data better than the LITHO1.0 model of Pasyanos et al. (2014). Our 3D model of the crust and upper mantle confirms many of the features seen in previous studies of the region, most notably the lithospheric thinning going from west to east and low velocity zones in the crust on the Tibetan periphery. We conclude that cluster analysis is able to greatly reduce the dimensionality of surface wave dispersion data, in the sense that a data set of over half a million dispersion curves is sufficiently predicted by appropriately averaging over a relatively small set of distinct tectonic regions. The resulting clustered model objectively quantifies the more intuitive ways in which we usually tend to interpret tomographic models.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.S51D0639W
- Keywords:
-
- 7260 Theory;
- SEISMOLOGY;
- 7270 Tomography;
- SEISMOLOGY;
- 7290 Computational seismology;
- SEISMOLOGY