Double-Difference Global Adjoint Tomography
Abstract
The adjoint method allows us to incorporate full waveform simulations in inverse problems. Misfit functions play an important role in extracting the relevant information from seismic waveforms. In this study, our goal is to apply the Double-Difference (DD) methodology proposed by Yuan et al. (2016) to global adjoint tomography. Dense seismic networks, such as USArray, lead to higher-resolution seismic images underneath continents. However, the imbalanced distribution of stations and sources poses challenges in global ray coverage. We adapt double-difference multitaper measurements to global adjoint tomography. We normalize each DD measurement by its number of pairs, and if a measurement has no pair, as may frequently happen for data recorded at oceanic stations, classical multitaper measurements are used. As a result, the differential measurements and pair-wise weighting strategy help balance uneven global kernel coverage. Our initial experiments with minor- and major-arc surface waves show promising results, revealing more pronounced structure near dense networks while reducing the prominence of paths towards cluster of stations. We have started using this new measurement in global adjoint inversions, addressing azimuthal anisotropy in upper mantle. Meanwhile, we are working on combining the double-difference approach with instantaneous phase measurements to emphasize contributions of scattered waves in global inversions and extending it to body waves. We will present our results and discuss challenges and future directions in the context of global tomographic inversions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.S51D0621O
- Keywords:
-
- 7260 Theory;
- SEISMOLOGY;
- 7270 Tomography;
- SEISMOLOGY;
- 7290 Computational seismology;
- SEISMOLOGY