Modeling the Propagation of Atmospheric Gravity Waves Produced by an Underground Nuclear Explosion using the Transfer Function Model
Abstract
We will present results from the Transfer Function Model (TFM), which simulates the neutral atmosphere, from 0 to 700 km, across the entire globe (pole to pole). The TFM is able to rapidly calculate the density and temperature perturbations created by a localized impulse. We have used TFM to simulate a ground-level explosion (equivalent to an underground nuclear explosion (UNE)) and its effects on the neutral atmosphere, including the propagation of gravity waves up to ionospheric heights. At ionospheric altitudes ion-neutral interactions are expected to lead to perturbations in the electron density. These perturbations can be observed as changes in the total electron content (TEC), a feature readily observed by the globally distributed network of global navigation satellite systems (GNSS) sensors. We will discuss the time and location of the maximum atmospheric disturbances at a number of altitudes, including the peaks of several ionospheric layers, including the F2 layer, which is often treated as the major driver of changes in GNSS-TEC observations. We will also examine the drop-off of atmospheric disturbances at those altitudes, both with increasing time and distance. The 6 known underground nuclear explosions (UNEs) by North Korea in the 21st century have sparked increased interest in UNE detection through atmospheric and ionospheric observations. The latest test by North Korea (3 Sept. 2017) was the largest UNE in over 2 decades. We will compare TFM results to the analysis of previous UNEs, including some tests by North Korea, and discuss possible confounding factors in predicting the time, location, and amplitude of atmospheric and ionospheric disturbances produced by a UNE.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.S43H2977B
- Keywords:
-
- 7230 Seismicity and tectonics;
- SEISMOLOGY