Near-field observations of microearthquake source physics using dense array
Abstract
The recorded waveform includes contributions from earthquake source properties and propagation effects, leading to long-standing trade-off problems between site/path effects and source effects. This problem is especially significant for small earthquakes where the corner frequencies are within similar ranges of near-site attenuation effects. Fortunately, this problem can be remedied by dense near-field recordings at high frequency, and large databases with wide magnitude range. The 2016 IRIS wavefield experiment provides high-quality recordings of earthquake sequences in north-central Oklahoma with about 400 sensors in 15 km area. Preliminary processing of the IRIS wavefield array resulted with about 20,000 microearthquakes ranging from M-1 to M2, while only 2 earthquakes are listed in the catalog during the same time period. A preliminary examination of the catalog reveals three similar magnitude earthquakes (M 2) occurred at similar locations within 9 seconds of each other. Utilizing this catalog, we will combine individual empirical Green's function (EGF) analysis and stacking over multiple EGFs to examine if there are any systematic variations of source time functions and spectral ratios across the array, which will provide constrains of rupture complexity, directivity and earthquake interactions. For example, this would help us to understand if these three earthquakes rupture overlapping fault patches from cascading failure, or from repeated rupture at the same slip patch due to external stress loading. Deciphering the interaction at smaller scales with near-field observations is important for a controlled earthquake experiment.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.S43C0878C
- Keywords:
-
- 4317 Precursors;
- NATURAL HAZARDS;
- 7209 Earthquake dynamics;
- SEISMOLOGY;
- 7215 Earthquake source observations;
- SEISMOLOGY;
- 8118 Dynamics and mechanics of faulting;
- TECTONOPHYSICS