Clustering P-Wave Receiver Functions To Constrain Subsurface Seismic Structure
Abstract
The acquisition of high-quality data from permanent and temporary dense seismic networks provides the opportunity to apply statistical and machine learning techniques to a broad range of geophysical observations. Lekic and Romanowicz (2011) used clustering analysis on tomographic velocity models of the western United States to perform tectonic regionalization and the velocity-profile clusters agree well with known geomorphic provinces. A complementary and somewhat less restrictive approach is to apply cluster analysis directly to geophysical observations. In this presentation, we apply clustering analysis to teleseismic P-wave receiver functions (RFs) continuing efforts of Larmat et al. (2015) and Maceira et al. (2015). These earlier studies validated the approach with surface waves and stacked EARS RFs from the USArray stations. In this study, we experiment with both the K-means and hierarchical clustering algorithms. We also test different distance metrics defined in the vector space of RFs following Lekic and Romanowicz (2011). We cluster data from two distinct data sets. The first, corresponding to the western US, was by smoothing/interpolation of receiver-function wavefield (Chai et al. 2015). Spatial coherence and agreement with geologic region increase with this simpler, spatially smoothed set of observations. The second data set is composed of RFs for more than 800 stations of the China Digital Seismic Network (CSN). Preliminary results show a first order agreement between clusters and tectonic region and each region cluster includes a distinct Ps arrival, which probably reflects differences in crustal thickness. Regionalization remains an important step to characterize a model prior to application of full waveform and/or stochastic imaging techniques because of the computational expense of these types of studies. Machine learning techniques can provide valuable information that can be used to design and characterize formal geophysical inversion, providing information on spatial variability in the subsurface geology.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.S43A0830C
- Keywords:
-
- 1914 Data mining;
- INFORMATICS;
- 1932 High-performance computing;
- INFORMATICS;
- 1942 Machine learning;
- INFORMATICS;
- 7290 Computational seismology;
- SEISMOLOGY