The cause of larger local magnitude (Mj) in western Japan
Abstract
The local magnitude of the Japan Meteorological Agency (JMA) scale (Mj) in Japan sometimes show a significant discrepancy between Mw. The Mj is calculated using the amplitude of the horizontal component of ground displacement recorded by seismometers with the natural period of T0=5 s using Katsumata et al. (2004). A typical example of such a discrepancy in estimating Mj was an overestimation of the 2000 Western Tottori earthquake (Mj=7.3, Mw=6.7; hereafter referred to as event T). In this study, we examined the discrepancy between Mj and Mw for recent large earthquakes occurring in Japan.We found that the most earthquakes with larger Mj (>Mw) occur in western Japan while the earthquakes in northern Japan show reasonable Mj (=Mw). To understand the cause of such larger Mj for western Japan earthquakes we examined the strong motion record from the K-NET and KiK-net network for the event T and other earthquakes for reference. The observed ground displacement record from the event T shows a distinctive Love wave packet in tangential motion with a dominant period of about T=5 s which propagates long distances without showing strong dispersions. On the other hand, the ground motions from the earthquakes in northeastern Japan do not have such surface wave packet, and attenuation of ground motion is significant. Therefore, the overestimation of the Mj for earthquakes in western Japan may be attributed to efficient generation and propagation properties of Love wave probably relating to the crustal structure of western Japan. To explain this, we then conducted a numerical simulation of seismic wave propagation using 3D sedimentary layer model (JIVSM; Koketsu et al., 2012) and the source model of the event T. The result demonstrated the efficient generation of Love wave from the shallow strike-slip source which propagates long distances in western Japan without significant dispersions. On the other hand, the generation of surface wave was not so efficient when using a sedimentary layer model of northeastern Japan. In this case, the attenuation of surface wave is very significant due to the dispersion and scattering as propagating through sedimentary basins. Therefore, overestimation of the Mj for earthquakes in western Japan strongly relates to the structure of western Japan to generate distinctive Love wave packet for long distances.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.S41B0767K
- Keywords:
-
- 7299 General or miscellaneous;
- SEISMOLOGY