Local earthquake interferometry of the IRIS Community Wavefield Experiment, Grant County, Oklahoma
Abstract
The IRIS Community Wavefield Experiment was deployed in Grant County, located in north central Oklahoma, from June 21 to July 27, 2016. Data from all nodes were recorded at 250 samples per second between June 21 and July 20 along three lines. The main line was 12.5 km long oriented east-west and consisted of 129 nodes. The other two lines were 5.5 km long north-south oriented with 49 nodes each. During this time, approximately 150 earthquakes of magnitude 1.0 to 4.4 were recorded in the surrounding counties of Oklahoma and Kansas. Ideally, sources for local earthquake interferometry should be near surface events that produce high frequency body waves. Unlike ambient noise seismic interferometry (ANSI), which uses days, weeks, or even months of continuously recorded seismic data, local earthquake interferometry uses only short segments ( 2 min.) of data. Interferometry in this case is based on the cross-correlation of body wave surface multiples where the event source is translated to a reference station in the array, which acts as a virtual source. Multiples recorded between the reference station and all other stations can be cross-correlated to produce a clear seismic trace. This process will be repeated with every node acting as the reference station for all events. The resulting shot gather will then be processed and analyzed for quality and accuracy. Successful application of local earthquake interferometry will produce a crustal image with identifiable sedimentary and basement reflectors and possibly a Moho reflection. Economically, local earthquake interferometry could lower the time and resource cost of active and passive seismic surveys while improving subsurface image quality in urban settings or areas of limited access. The applications of this method can potentially be expanded with the inclusion of seismic events with a magnitude of 1.0 or lower.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.S31A0792E
- Keywords:
-
- 7203 Body waves;
- SEISMOLOGY;
- 7255 Surface waves and free oscillations;
- SEISMOLOGY;
- 7260 Theory;
- SEISMOLOGY;
- 7270 Tomography;
- SEISMOLOGY