A SHERLOC Study: Detection of Organics in Simulated Martian Soil using Deep UV Raman Spectroscopy
Abstract
The SHERLOC investigation is a vital part of NASA's 2020 Mars payload [1]. It utilizes deep UV Raman and fluorescence spectroscopy to enable non-contact, non-destructive detection and characterization of in situ organics and minerals in the Martian surface and near subsurface. Raman spectroscopy using deep UV excitation wavelengths (<250 nm) offers the benefit of spectra obtained in a largely fluorescence-free region, while taking advantage of signal enhancing resonance effects for key classes of organic compounds [2,3]. To further demonstrate SHERLOC's capabilities, we interrogated 3 sample sets using a bench-top version of SHERLOC, utilizing a 248.6 nm hollow cathode laser. Sample sets included: (1) a well characterized Martian soil simulant (MMS) [4] containing 0.04 wt% (400 ppm) condensed carbon; (2) a suite of organic standards and astrobiologically relevant mineral standards; and (3) the MMS spiked with a selection of these standards, at a concentration of 1 wt%, in order to investigate 'real world' matrix effects. We were able to resolve all standards examined at the 1 wt% level. Some organic compounds, such as aromatic hydrocarbons, had especially strong signals, due to resonance effects, even when present in trace amounts. Phenanthrene, for example, was also examined at a concentration of 0.1 wt%, and even at this level it still had a very strong signal-to-noise ratio. Also, it should be noted that this technique requires very low fluence on the sample ( 60 J/cm2), minimizing degradation of organics and allowing their detection in the presence of strong oxidizers without fear of combustion due to heating [5,6]. In this study, perchlorate at 1 wt% was successfully detected in the presence of organic compounds native to the MMS; this concentration is comparable to the amount of perchlorate suspected to be present in Mars soil [6,7]. This work expands on data previously reported in Abbey et al., 2017 [8]. References: [1] Beegle et al., 2015 IEEE Aerospace Conf., 2015; [2] Asher, Anal. Chem. 65 (4), 1993; [3] Bhartia et al., Appl. Spectrosc. 62 (10), 2008; [4] Peters et al., Icarus 197, 2008; [5] Navarro-Gonzalez et al., J. Geophys. Res. 115, 2010; [6] Glavin et al., J. Geophys. Res. 118, 2013; [7] Hecht et al., Science 325, 2009; [8] Abbey et al., Icarus 290, 2017.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P53E2674A
- Keywords:
-
- 0406 Astrobiology and extraterrestrial materials;
- BIOGEOSCIENCES;
- 1065 Major and trace element geochemistry;
- GEOCHEMISTRY;
- 2784 Solar wind/magnetosphere interactions;
- MAGNETOSPHERIC PHYSICS;
- 6296 Extra-solar planets;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS