Recent Asteroid Disruptions in the WISE Dataset - Constraining Asteroid Surface Properties Using Solar System Dust Bands
Abstract
Zodiacal dust bands are a fine-structure feature of the mid-IR emission profile of the zodiacal cloud. The dust bands have been studied for many years dating back to the InfraRed Astronomical Satellite (IRAS) data of the 1980's. The recent discovery and modeling (Espy et al., 2009; 2010; Espy Kehoe et al., 2015) of a very young, still-forming dust band structure has shown that, in the early stages following an asteroid disruption, much information on the dust parameters of the original disruption is retained in the band. Partial dust bands allow a never-before-seen observational look at the size distribution and cross-sectional area of dust produced in an asteroidal disruption, before it has been lost or significantly altered by orbital and collisional decay. The study of these partial band structures reveals information on the way asteroids disrupt and allow us to reconstruct the surface properties of the parent asteroid, including the depth of the surface regolith and the size distribution of particles composing the regolith. Using the greatly increased sensitivity of the Wide-field Infrared Survey Explorer (WISE), we can now detect much fainter (and thus younger) dust bands. The WISE data also reveals much better longitudinal resolution of the bands, allowing a better constraint on the source and age of the disruption. We will present our newest results from the WISE dataset, including detection of faint partial dust bands, improved models of more prominent bands, and our constraints on the asteroid surface properties from modeling these structures.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P51B2587K
- Keywords:
-
- 6205 Asteroids;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6230 Martian satellites;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6250 Moon;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 5470 Surface materials and properties;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS