Top-down solidification of lunar magma ocean
Abstract
The early Moon was wholly or mostly molten, known as Lunar Magma Ocean (LMO) [1]. Most models suggest that the solidification of the LMO is bottom-up crystallization, because the liquidus temperature of the LMO increases with pressure more quickly than the adiabatic temperature [2]. In addition, the quenched lid is simply assumed to founder into the LMO [3, 4], because this solid lid is denser than the magma ocean liquids. Therefore, the dominated model for the solidification of the LMO is: olivine and pyroxene crystallized first at the base of the LMO and form the Moon's mantle; after ∼80% of the LMO had solidified, plagioclase began to crystallize and floated from dense silicate melt to the surface to form a global crust of anorthosite [5]. However, as the observational data on lunar meteorites accumulated, the standard model received challenges [6, 7]. Here we propose a new model suggesting the solidification of the LMO is top-down. Our model considers that olivine, pyroxene and plagioclase would crystalize at the mush region between the initially quenched lid and the interior of the LMO at the initial stage. Then the crystallized plagioclase floated and collected at the Moon's surface to form a stable anorthosite-crust; while the crystallized olivine and pyroxene would descend into the LMO and completely remelt away because the LMO interior is super-liquidus [2]. The overall result of our model is that plagioclase existed stably prior to olivine and pyroxene, rather than it crystallized after ∼80% LMO solidification. So, the model here is fundamentally different from previous models [5]. The plagioclase can crystallize from the very beginning to the end of the LMO, that is consistent with the ancient anorthosite age and long anorthosite-crystallization span which is over 200 Myr [6]. Importantly, our model can explain the coexistence of ferroan and magnesian anorthosite [7]. In addition, it is also understandable that the whole lunar mantle is depleted in Eu, Al2O3 and enriched in FeO and TiO2. [1] Wood, J.A. (1986) in Origin of the Moon, 17; [2] Solomatov et al. (2000), in Origin of the Earth and Moon, 323; [3] Spera (1992) GCA 56, 2253; [4] Walker et al. (1980) LPSC, 1196; [5] Snyder et al. (1992) GCA 56, 3809; [6] Pernet-Fisher et al. (2016) Astronomy & Geophysics 57, 1.26; [7] Gross et al. (2014) EPSL 388, 318.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P51A2572Z
- Keywords:
-
- 6024 Interiors;
- PLANETARY SCIENCES: COMETS AND SMALL BODIES;
- 6040 Origin and evolution;
- PLANETARY SCIENCES: COMETS AND SMALL BODIES;
- 5430 Interiors;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS;
- 5455 Origin and evolution;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS