The New Horizons Ultraviolet Solar Occultation by Pluto's Atmosphere
Abstract
The Alice instrument on NASA's New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14, as the spacecraft flew nearly diametrically though the solar shadow. The resulting dataset was a time-series of spectra from 52 to 187 nm with a spectral resolution of 0.3 nm. From these, we derived line-of-sight abundances and local number densities for the major species (N2 and CH4) and minor hydrocarbons (C2H2, C2H4, C2H6), and line-of-sight optical depth and extinction coefficients for the haze. Analysis of these data imply that (1) temperatures in Pluto's upper atmosphere were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K, and subsequently lower escape rates, dominated by CH4 escape over N2; (2) the lower atmosphere was very stable, placing the homopause within 12 km of the surface, (3) the abundance profiles of the "C2Hx hydrocarbons" had non-exponential density profiles that compared favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, and (4) haze had an extinction coefficient approximately proportional to N2 density.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P11C2517Y
- Keywords:
-
- 6270 Pluto and satellites;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6285 Trans-Neptunian objects;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 5405 Atmospheres;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS;
- 5410 Composition;
- PLANETARY SCIENCES: SOLID SURFACE PLANETS