Nightside Structure of the Venusian Ionosphere
Abstract
The Pioneer Venus Orbiter, PVO, was the first mission to detect large-scale structure in the nightside region of Venus. This structure is often referred to as "tail rays." Since this discovery, there has been continuous discussion as to the cause of the structure. There have been theoretical attempts to explain the structure but no definitive determination of the mechanism. Typically, the wavelengths of the structure were not always consistent with the theory. Three-dimensional hybrid simulations are reported that produce structure on the nightside of Venus. The structure seems consistent with the data. This paper will present the results of the simulations as well as a variety of numerical tests that offer some insight into the mechanism driving the development of the structure. The tests reveal that the ambipolar electric fields as produced by the gradient of the electron pressure seems to be the root cause of the structure. It will be shown that different realizations of the neutral wind modify the structure. The hybrid simulations are three dimensional with neutral winds included in the simulations. The resolution of the simulation is 50 km/cell and lower. The spherical grid used in the simulations to handle chemistry and collisions has a resolution of 5 km radially and under 50 km in the angular directions. It is these high resolution simulations that produce the structure to be discussed in this paper.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P11B2512L
- Keywords:
-
- 2459 Planetary ionospheres;
- IONOSPHERE;
- 2736 Magnetosphere/ionosphere interactions;
- MAGNETOSPHERIC PHYSICS;
- 2756 Planetary magnetospheres;
- MAGNETOSPHERIC PHYSICS;
- 6207 Comparative planetology;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS