Discovery of Suprathermal Fe+ in and near Earth's Magnetosphere
Abstract
Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been observed in and near Earth's equatorial magnetosphere using long-term ( 21 years) Geotail/STICS ion composition data. Fe+ is rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions. Earth's suprathermal Fe+ appears to be positively associated with both geomagnetic and solar activity. Three candidate lower-energy sources are examined for relevance: ionospheric outflow of Fe+ escaped from ion layers altitude, charge exchange of nominal solar wind Fe+≥7, and/or solar wind transported inner source pickup Fe+ (likely formed by solar wind Fe+≥7 interaction with near sun interplanetary dust particles, IDPs). Semi-permanent ionospheric Fe+ layers form near 100 km altitude from the tons of IDPs entering Earth's atmosphere daily. Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data at low-to-moderate geomagnetic activity levels, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source then. Earth flyby and cruise data from Cassini/CHEMS, a nearly identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Therefore, lacking any other candidate sources, it appears that ionospheric Fe+ constitutes at least an important portion of Earth's suprathermal Fe+, comparable to observations at Saturn where ionospheric origin suprathermal Fe+ has also been observed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P11B2503C
- Keywords:
-
- 2459 Planetary ionospheres;
- IONOSPHERE;
- 2736 Magnetosphere/ionosphere interactions;
- MAGNETOSPHERIC PHYSICS;
- 2756 Planetary magnetospheres;
- MAGNETOSPHERIC PHYSICS;
- 6207 Comparative planetology;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS