Strategies to reduce the complexity of hydrologic data assimilation for high-dimensional models
Abstract
Probabilistic forecasts in the geosciences offer invaluable information by allowing to estimate the uncertainty of predicted conditions (including threats like floods and droughts). However, while forecast systems based on modern data assimilation algorithms are capable of producing multi-variate probability distributions of future conditions, the computational resources required to fully characterize the dependencies between the model's state variables render their applicability impractical for high-resolution cases. This occurs because of the quadratic space complexity of storing the covariance matrices that encode these dependencies and the cubic time complexity of performing inference operations with them. In this work we introduce two complementary strategies to reduce the size of the covariance matrices that are at the heart of Bayesian assimilation methods—like some variants of (ensemble) Kalman filters and of particle filters—and variational methods. The first strategy involves the optimized grouping of state variables by clustering individual cells of the model into "super-cells." A dynamic fuzzy clustering approach is used to take into account the states (e.g., soil moisture) and forcings (e.g., precipitation) of each cell at each time step. The second strategy consists in finding a compressed representation of the covariance matrix that still encodes the most relevant information but that can be more efficiently stored and processed. A learning and a belief-propagation inference algorithm are developed to take advantage of this modified low-rank representation. The two proposed strategies are incorporated into OPTIMISTS, a state-of-the-art hybrid Bayesian/variational data assimilation algorithm, and comparative streamflow forecasting tests are performed using two watersheds modeled with the Distributed Hydrology Soil Vegetation Model (DHSVM). Contrasts are made between the efficiency gains and forecast accuracy losses of each strategy used in isolation, and of those achieved through their coupling. We expect these developments to help catalyze improvements in the predictive accuracy of large-scale forecasting operations by lowering the costs of deploying advanced data assimilation techniques.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H53F1534H
- Keywords:
-
- 1805 Computational hydrology;
- HYDROLOGY;
- 1821 Floods;
- HYDROLOGY;
- 1847 Modeling;
- HYDROLOGY;
- 1860 Streamflow;
- HYDROLOGY