Variation of Probable Maximum Precipitation in Brazos River Basin, TX
Abstract
The Brazos River basin, the second-largest river basin by area in Texas, generates the highest amount of flow volume of any river in a given year in Texas. With its headwaters located at the confluence of Double Mountain and Salt forks in Stonewall County, the third-longest flowline of the Brazos River traverses within narrow valleys in the area of rolling topography of west Texas, and flows through rugged terrains in mainly featureless plains of central Texas, before its confluence with Gulf of Mexico. Along its major flow network, the river basin covers six different climate regions characterized on the basis of similar attributes of vegetation, temperature, humidity, rainfall, and seasonal weather changes, by National Oceanic and Atmospheric Administration (NOAA). Our previous research on Texas climatology illustrated intensified precipitation regimes, which tend to result in extreme flood events. Such events have caused huge losses of lives and infrastructure in the Brazos River basin. Therefore, a region-specific investigation is required for analyzing precipitation regimes along the geographically-diverse river network. Owing to the topographical and hydroclimatological variations along the flow network, 24-hour Probable Maximum Precipitation (PMP) was estimated for different hydrologic units along the river network, using the revised Hershfield's method devised by Lan et al. (2017). The method incorporates the use of a standardized variable describing the maximum deviation from the average of a sample scaled by the standard deviation of the sample. The hydrometeorological literature identifies this method as more reasonable and consistent with the frequency equation. With respect to the calculation of stable data size required for statistically reliable results, this study also quantified the respective uncertainty associated with PMP values in different hydrologic units. The corresponding range of return periods of PMPs in different hydrologic units was further evaluated using the inverse CDF functions of the most appropriate probability distributions. The analysis will aid regional water boards in designing hydraulic structures, such as dams, spillways, levees, and in identifying and implementing prevention and control mechanisms for extreme flood events resulting from the PMPs.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H53D1487B
- Keywords:
-
- 1821 Floods;
- HYDROLOGY;
- 1869 Stochastic hydrology;
- HYDROLOGY;
- 4313 Extreme events;
- NATURAL HAZARDS;
- 4328 Risk;
- NATURAL HAZARDS