Efficacy of Radiative Transfer Model Across Space, Time and Hydro-climates
Abstract
The efficiency of radiative transfer model for better soil moisture retrievals is not yet clearly understood over natural systems with great variability and heterogeneity with respect to soil, land cover, topography, precipitation etc. However, this knowledge is important to direct and strategize future research direction and field campaigns. In this work, we present global sensitivity analysis (GSA) technique to study the influence of heterogeneity and uncertainties on radiative transfer model (RTM) and to quantify climate-soil-vegetation interactions. A framework is proposed to understand soil moisture mechanisms underlying these interactions, and influence of these interactions on soil moisture retrieval accuracy. Soil moisture dynamics is observed to play a key role in variability of these interactions, i.e., it enhances both mean and variance of soil-vegetation coupling. The analysis is conducted for different support scales (Point Scale, 800 m, 1.6 km, 3.2 km, 6.4 km, 12.8 km, and 36 km), seasonality (time), hydro-climates, aggregation (scaling) methods and across Level I and Level II ecoregions of contiguous USA (CONUS). For undisturbed natural environments such as SGP'97 (Oklahoma, USA) and SMEX04 (Arizona, USA), the sensitivity of TB to land surface variables remain nearly uniform and are not influenced by extent, support scales or averaging method. On the contrary, for anthropogenically-manipulated environments such as SMEX02 (Iowa, USA) and SMAPVEX12 (Winnipeg, Canada), the sensitivity to variables are highly influenced by the distribution of land surface heterogeneity and upscaling methods. The climate-soil-vegetation interactions analyzed across all ecoregions are presented through a probability distribution function (PDF). The intensity of these interactions are categorized accordingly to yield "hotspots", where the RTM model fails to retrieve soil moisture. A ecoregion specific scaling function is proposed for these hotspots to rectify RTM for retrieving soil moisture.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H51R..07M
- Keywords:
-
- 1655 Water cycles;
- GLOBAL CHANGE;
- 1816 Estimation and forecasting;
- HYDROLOGY;
- 1847 Modeling;
- HYDROLOGY;
- 1855 Remote sensing;
- HYDROLOGY