Using the Signal Tools and Statistical Tools to Redefine the 24 Solar Terms in Peasant Calendar by Analyzing Surface Temperature and Precipitation
Abstract
There is an important book called "Peasant Calendar" in the Chinese society. The Peasant Calendar is originally based on the orbit of the Sun and each year is divided into 24 solar terms. Each term has its own special meaning and conception. For example, "Spring Begins" means the end of winter and the beginning of spring. In Taiwan, 24 solar terms play an important role in agriculture because farmers always use the Peasant Calendar to decide when to sow. However, the current solar term in Taiwan is fixed about 15 days. This way doesn't show the temporal variability of climate and also can't truly reflect the regional climate characteristics in different areas.The number of days in each solar term should be more flexible. Since weather is associated with climate, all weather phenomena can be regarded as a multiple fluctuation signal. In this research, 30 years observation data of surface temperature and precipitation from 1976 2016 are used. The data is cut into different time series, such as a week, a month, six months to one year and so on. Signal analysis tools such as wavelet, change point analysis and Fourier transform are used to determine the length of each solar term. After determining the days of each solar term, statistical tests are used to find the relationships between the length of solar terms and climate turbulent (e.g., ENSO and PDO).For example, one of the solar terms called "Major Heat" should typically be more than 20 days in Taiwan due to global warming and heat island effect. The advance of Peasant Calendar can help farmers to make better decision, controlling crop schedule and using the farmland more efficient. For instance, warmer condition can accelerate the accumulation of accumulated temperature, which is the key of crop's growth stage. The result also can be used on disaster reduction (e.g., preventing agricultural damage) and water resources project.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H51I1385H
- Keywords:
-
- 1817 Extreme events;
- HYDROLOGY;
- 1840 Hydrometeorology;
- HYDROLOGY;
- 1854 Precipitation;
- HYDROLOGY;
- 1855 Remote sensing;
- HYDROLOGY