Estimating the Change of Groundwater Salinization in the Central North China Plain for Sustainable Groundwater Utilization
Abstract
Due to the growing demand of food supplies and limited freshwater resources, North China Plain (NCP) is highly dependent on the groundwater resources. Groundwater overdraft has made NCP a closed hydrologic basin, where the connection between surface and groundwater has been cut off, which can lead to salt accumulation in the groundwater system. Thus it is imperative to investigate the overall salt balance in the region for sustainable utilization of groundwater resources, as well as to better understand the salt accumulating processes caused by groundwater pumping and return flow. The central plain of NCP (excluding the piedmont plain and coastal plain) is selected in the present study, where the groundwater salt content is mainly controlled by precipitation, irrigation, groundwater pumping and rock-water interaction in vertical direction; therefore, a conceptual 1-D mixing model is developed for salt balance calculation, where the salt content is expressed by the concentration of Total Dissolved Solid (TDS) in groundwater. Geological structures and regional water balance data are obtained from numerical groundwater models previously developed in the area. The simulation starts in year 1900 with a 50-year time step and groundwater vertical flow velocity starting with 2 m/y. TDS concentration is then calculated through salt input and output in each layer, with consideration of soil salt accumulation, change of precipitation, rock-water interaction etc. The results suggest that in a closed hydrologic basin, groundwater pumping and return flow will gradually increase salt content in the groundwater body from upper layers to lower layers resulting from the flushing of salt accumulated in the top soil layer. After two time steps, the model is able to reproduce the observed TDS concentration in present time with reasonable accuracy; and after six time steps, which correspond to 300 years, the whole central plain of NCP will be under the influence of high salinity, which is around 2000 mg/L of TDS. The study also suggests that in order to predict the future change of salt content in groundwater in NCP more accurately, the mechanisms of how salinity accumulates in the surface soil is the most critical factor, which requires further research.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H51G1359Z
- Keywords:
-
- 1807 Climate impacts;
- HYDROLOGY;
- 1829 Groundwater hydrology;
- HYDROLOGY;
- 1834 Human impacts;
- HYDROLOGY;
- 1880 Water management;
- HYDROLOGY