Quantifying the Contribution of Regional Aquifers to Stream Flow in the Upper Colorado River Basin
Abstract
The growing population of the arid and semiarid southwestern U.S. relies on over-allocated surface water resources and poorly quantified groundwater resources. In the Upper Colorado River Basin, recent studies have found that about 50 percent of the surface water at U.S. Geological Survey (USGS) stream gages is derived from groundwater contributions as base flow. Prior USGS and other studies for the Colorado Plateau region have mainly examined groundwater and surface water as separate systems, and there has yet to be regional synthesis of groundwater availability in aquifers that contribute to surface water. A more physically based representation of groundwater flow could improve simulations of surface-water capture by groundwater pumping, and changes of groundwater discharge to surface water caused by possible shifts in the distribution, magnitude, and timing of recharge in the future. We seek to improve conceptual and numerical models of groundwater and surface-water interactions in the Colorado Plateau region as part of a USGS regional groundwater availability assessment. Numerical modeling is used to simulate and quantify the base flow from groundwater to the Colorado River and its major tributaries. Groundwater/surface-water interactions will be simulated using the USGS code GSFLOW, which couples the Precipitation Runoff Modeling System (PRMS) to the groundwater flow model MODFLOW. Initial results suggest that interactions between groundwater and surface water are important for projecting long-term changes in surface water budgets.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H51G1350M
- Keywords:
-
- 1807 Climate impacts;
- HYDROLOGY;
- 1829 Groundwater hydrology;
- HYDROLOGY;
- 1834 Human impacts;
- HYDROLOGY;
- 1880 Water management;
- HYDROLOGY