Development Of A Data Assimilation Capability For RAPID
Abstract
The global decline of in situ observations associated with the increasing ability to monitor surface water from space motivates the creation of data assimilation algorithms that merge computer models and space-based observations to produce consistent estimates of terrestrial hydrology that fill the spatiotemporal gaps in observations. RAPID is a routing model based on the Muskingum method that is capable of estimating river streamflow over large scales with a relatively short computing time. This model only requires limited inputs: a reach-based river network, and lateral surface and subsurface flow into the rivers. The relatively simple model physics imply that RAPID simulations could be significantly improved by including a data assimilation capability. Here we present the early developments of such data assimilation approach into RAPID. Given the linear and matrix-based structure of the model, we chose to apply a direct Kalman filter, hence allowing for the preservation of high computational speed. We correct the simulated streamflows by assimilating streamflow observations and our early results demonstrate the feasibility of the approach. Additionally, the use of in situ gauges at continental scales motivates the application of our new data assimilation scheme to altimetry measurements from existing (e.g. EnviSat, Jason 2) and upcoming satellite missions (e.g. SWOT), and ultimately apply the scheme globally.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H51E1324E
- Keywords:
-
- 1805 Computational hydrology;
- HYDROLOGY;
- 1847 Modeling;
- HYDROLOGY;
- 1855 Remote sensing;
- HYDROLOGY;
- 1910 Data assimilation;
- integration and fusion;
- INFORMATICS