Near Surface Geophysical Investigations of Potential Direct Recharge Zones in the Biscayne Aquifer within Everglades National Park, Florida.
Abstract
The karstic Miami Limestone of the Biscayne aquifer is characterized as having water flow that is controlled by the presence of dissolution enhanced porosity and mega-porous features. The dissolution features and other high porosity areas create horizontal preferential flow paths and high rates of ground water velocity, which may not be accurately conceptualized in groundwater flow models. In addition, recent research suggests the presence of numerous vertical dissolution features across Everglades National Park at Long Pine Key Trail, that may act as areas of direct recharge to the aquifer. These vertical features have been identified through ground penetrating radar (GPR) surveys as areas of velocity pull-down which have been modeled to have porosity values higher than the surrounding Miami Limestone. As climate change may induce larger and longer temporal variability between wet and dry times in the Everglades, a more comprehensive understanding of preferential flow pathways from the surface to the aquifer would be a great benefit to modelers and planners. This research utilizes near surface geophysical techniques, such as GPR, to identify these vertical dissolution features and then estimate the spatial variability of porosity using petrophysical models. GPR transects that were collected for several kilometers along the Long Pine Key Trail, show numerous pull down areas that correspond to dissolution enhanced porosity zones within the Miami Limestone. Additional 3D GPR surveys have attempted to delineate the boundaries of these features to elucidate their geometry for future modelling studies. We demonstrate the ability of near surface geophysics and petrophysical models to identify dissolution enhanced porosity in shallow karstic limestones to better understand areas that may act as zones of direct recharge into the Biscayne Aquifer.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H51C1282M
- Keywords:
-
- 1807 Climate impacts;
- HYDROLOGY;
- 1829 Groundwater hydrology;
- HYDROLOGY;
- 1830 Groundwater/surface water interaction;
- HYDROLOGY;
- 1847 Modeling;
- HYDROLOGY