Evaluating Outdoor Water Use Demand under Changing Climatic and Demographic Conditions: An Agent-based Modeling Approach
Abstract
Outdoor water-use for landscape and irrigation constitutes a significant end-use in total residential water demand. In periods of water shortages, utilities may reduce garden demands by implementing irrigation system audits, rebate programs, local ordinances, and voluntary or mandatory water-use restrictions. Because utilities do not typically record outdoor and indoor water-uses separately, the effects of policies for reducing garden demands cannot be readily calculated. The volume of water required to meet garden demands depends on the housing density, lawn size, type of vegetation, climatic conditions, efficiency of garden irrigation systems, and consumer water-use behaviors. Many existing outdoor demand estimation methods are deterministic and do not include consumer responses to conservation campaigns. In addition, mandatory restrictions may have a substantial impact on reducing outdoor demands, but the effectiveness of mandatory restrictions depends on the timing and the frequency of restrictions, in addition to the distribution of housing density and consumer types within a community. This research investigates a garden end-use model by coupling an agent-based modeling approach and a mechanistic-stochastic water demand model to create a methodology for estimating garden demand and evaluating demand reduction policies. The garden demand model is developed for two water utilities, using a diverse data sets, including residential customer billing records, outdoor conservation programs, frequency and type of mandatory water-use restrictions, lot size distribution, population growth, and climatic data. A set of garden irrigation parameter values, which are based on the efficiency of irrigation systems and irrigation habits of consumers, are determined for a set of conservation ordinances and restrictions. The model parameters are then validated using customer water usage data from the participating water utilities. A sensitivity analysis is conducted for garden irrigation parameters to determine the most significant factors that should be considered by water utilities to reduce outdoor demand. Data from multiple sources and the agent-based modeling methodology are integrated using a holistic approach to assist utilities in efficiently and sustainably managing outdoor demand.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H43R..05K
- Keywords:
-
- 1803 Anthropogenic effects;
- HYDROLOGY;
- 1834 Human impacts;
- HYDROLOGY;
- 1836 Hydrological cycles and budgets;
- HYDROLOGY;
- 1880 Water management;
- HYDROLOGY