Long-term stream discharge and chemistry observations reveal unexpected ecosystem dynamics: Coweeta Watershed 7 clearcut manipulation
Abstract
In the 1970s, the Coweeta Hydrologic Laboratory Watershed 7 was clearcut from ridge to ridge to observe how far the perturbation would move the ecosystem and how quickly the ecosystem would return to its pre-disturbance state. Nearly 40 years of observations of streamflow and DIN export demonstrate that this view of ecosystem resistance and resilience was too simplistic. Forest disturbance triggered a chain of ecological dynamics that are still evolving. For the first 12 years following watershed road building, forest harvest, and forest regeneration, streamflows and DIN concentrations temporarily increased and then appeared to return to pre-harvest behavior. Thereupon the ecosystem trajectory diverged from expectations. Unexpected successional changes in forest composition interacted with drought cycles, climate change effects, and forest changes due to pests and diseases to push the biogeochemical system into an alternate state featuring persistently high DIN concentrations and hydrological rather than biological control of DIN exports. Thirty years after harvest, these forest changes also increased evapotranspiration and reduced water yields. These ecosystem dynamics were only revealed because of long-term monitoring, and they inspired new research to elucidate mechanisms behind these dynamics. We conclude that long-term approaches are critical for understanding ecosystem dynamics and responses to disturbances.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H43O..05J
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- BIOGEOSCIENCES;
- 0470 Nutrients and nutrient cycling;
- BIOGEOSCIENCES;
- 1804 Catchment;
- HYDROLOGY;
- 1836 Hydrological cycles and budgets;
- HYDROLOGY