Characterization of Non-Newtonian Fluids for Environmental Applications
Abstract
Non-Newtonian fluids are fluids that exhibit viscosity changes with time, stress, or changing shear rates. This distinctive quality is advantageous to a number of applications, such as hydraulic fracturing and contaminant remediation. The use of non-Newtonian fluids in contaminant remediation has recently increased as a method of improving delivery of chemical oxidants and surfactants in hard-to-reach, low permeability zones within the subsurface. As the application of these fluids continues to increase, a need to improve upon the basic understanding of non-Newtonian fluid rheology becomes increasingly important. This study investigates the characteristics of guar gum and xanthan gum, two common non-Newtonian polymers, and how factors such as composition, preparation method, and chemical and biological degradation impact the rheology of the fluids. Because the polymers are semi-hydrophobic, preparation of solutions requires blending, heating, pre-dissolution in alcohol, addition of surfactant, or stirring for extended time periods. Additionally, fluids are commonly filtered to remove undissolved material and gels, and subsequently stored under a variety of conditions. We investigated the effect of these processes on the fluids' rheology by producing solutions at a range of concentrations with a variety of preparation and storage methods. The rheological properties of the solutions were then measured over a period of months with a rotational rheometer. The experimental data were fit to standard rheological models, and the parameters of these models were used to quantitatively assess the effect of chemical composition, physical processing, and storage on the fluid rheology. The results of this study provide an improved basis with which to predict physical, chemical, and temporal alterations of guar and xanthan gum rheology, and thereby allow for improved design of experimental, modeling, and field applications utilizing non-Newtonian fluids.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H43I1767E
- Keywords:
-
- 1847 Modeling;
- HYDROLOGY;
- 1859 Rocks: physical properties;
- HYDROLOGY;
- 1875 Vadose zone;
- HYDROLOGY