Effects of Climate Change in the Water Balance of a Modified River Watershed System in Central Illinois
Abstract
Understanding the response of water cycle dynamics to climate change and human activity is essential for best management of water resources. This study used the USDA Soil-Water Assessment Tool (SWAT) to measure and predict major water balance variables including stream discharge, potential aquifer recharge, and surface storage in a small-scale watershed ( 2,930 km²) in Central Illinois. The Mackinaw River drains the study watershed, which is predominantly tile-drained agricultural land. Two reservoirs, Evergreen Lake and Lake Bloomington, and the Mahomet Aquifer in the watershed are used for public water supply. Tiles modify watershed hydrology by efficiently draining water from saturated soil to streams, which increases total streamflow and reduces direct aquifer recharge from precipitation. To assess how the watershed is affected by future climate change, this study used high-resolution climate projection data ( 12 km) in a calibrated and validated SWAT hydrologic model. Using General Circulation Models, four (4) representative concentration pathways (RCPs) developed by the IPCC Coupled Model Intercomparison Project Fifth Assessment Report (CMIP5) were used for prediction of precipitation, mean, minimum, and maximum temperature for the watershed. Temperature predictions for 2050 were warmer for RCPs 2.6 and 8.0 (+0.69°C and +1.8°C), coinciding with increased precipitation rates (+2.5% and +4.3%). End of century projections indicate warmer mean temperatures (+0.66°C and +4.9°C) for RCPs 2.6 and 8.0. By 2099, precipitation predictions are wetter for RCP 8.0 (+10%), but drier for RCP 2.6 (-2%) from the baseline. Preliminary model calibration (R2 value = 0.7) results showed an annual average watershed yield of 32.8 m³/s at the outlet with average potential recharge of 18% of total precipitation. Tile flow comprises 10 to 30% of total flow in the watershed simulations. Predicted hydrologic variables for the extreme scenarios at mid- and end of century indicate +4.1% total flow and +4.8% recharge for RCP 2.6, compared to +4.5% total flow and +11% recharge for RCP 8.0. Effects of tile drainage and other management practices in the watershed will be examined under climate change scenarios. Model results will be used to aid future decisions involving water resource consumption and agricultural management.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.H43H1754H
- Keywords:
-
- 1630 Impacts of global change;
- GLOBAL CHANGE;
- 1807 Climate impacts;
- HYDROLOGY;
- 1840 Hydrometeorology;
- HYDROLOGY;
- 1847 Modeling;
- HYDROLOGY